

Intellia Therapeutics' legal disclaimer

This presentation contains "forward-looking statements" of Intellia Therapeutics, Inc. ("Intellia", "we" or "our") within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, express or implied statements regarding Intellia's beliefs and expectations regarding: the safety, efficacy and advancement of our clinical program for NTLA-2002 for the treatment of hereditary angioedema ("HAE"); its ability to generate data for NTLA-2002 as a potential single-dose treatment for HAE, including safety, kallikrein reduction and attack rate data including permanently preventing debilitating swelling attacks; its belief that NTLA-2002 may offer patients suffering from HAE a functional cure for their disease; its expectation to complete enrollment of the Phase 2 dose-expansion portion of the study in the second half of 2023; its ability to replicate or apply results achieved in preclinical studies, including those in our HAE program, in any future studies; statements regarding the timing of regulatory filings and clinical trial execution, including enrollment and dosing of patients, regarding our development programs; and potential commercial opportunities, including value and market, for our product candidates.

Any forward-looking statements in this presentation are based on management's current expectations and beliefs of future events, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: risks related to our ability to protect and maintain our intellectual property position; including our licensors and licensees; risks related to the ability of our licensors to protect and maintain their intellectual property position; uncertainties related to regulatory agencies' evaluation of regulatory filings and other information related to our product candidates; uncertainties related to the authorization, initiation and conduct of studies and other development requirements for our product candidates; risks related to the development and/or commercialization of any of Intellia's or its collaborators' product candidates, including that they may not be successfully developed and commercialized; risks related to the results of preclinical studies or clinical studies, including that they may not be positive or predictive of future results in connection with future studies; risks related to the successful enrollment of patients in the Phase 1/2 study for NTLA-2002 for the treatment of HAE; and the risk we will not be able to demonstrate our platform's modularity and replicate or apply results achieved in preclinical studies to develop additional product candidates, including to apply our proprietary CRISPR/Cas9 technology platform successfully to additional product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause Intellia's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in Intellia's most recent annual report on Form 10-K and quarterly report on Form 10-Q as well as discussions of po

Agenda

Welcome

Introduction

Dr. John Leonard *Chief Executive Officer*, Intellia Therapeutics

Review of NTLA-2002 Interim Clinical Data

Dr. David Lebwohl

Chief Medical Officer, Intellia Therapeutics

Overview of Current HAE Treatment Landscape and Unmet Medical Need Dr. Timothy J. Craig

Tenured Professor of Medicine, Pediatrics and Biomedical Sciences; Penn State University

Closing Remarks and Q&A Session

Agenda

Welcome

Dr. John Leonard

Chief Executive Officer, Intellia Therapeutics

Review of NTLA-2002 Interim Clinical Data

Dr. David Lebwohl

Chief Medical Officer, Intellia Therapeutics

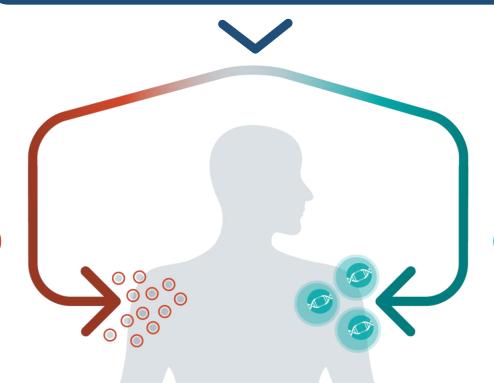
Overview of Current HAE Treatment Landscape and Unmet Medical Need

Dr. Timothy J. Craig

Tenured Professor of Medicine, Pediatrics and Biomedical Sciences; Penn State University

Closing Remarks and Q&A Session

Advancing a full-spectrum genome editing company


CRISPR-based Modular Platform

EMPLOY NOVEL EDITING AND DELIVERY TOOLS

In Vivo
CRISPR <u>is</u>
the therapy

FIX THE TARGET GENE

Genetic diseases

Ex Vivo
CRISPR creates

the therapy

REWIRE & REDIRECT CELLS

Immuno-oncology
Autoimmune diseases

Agenda

Welcome

Introduction

Dr. John Leonard

Chief Executive Officer, Intellia Therapeutics

Review of NTLA-2002 Interim Clinical Data

Dr. David Lebwohl

Chief Medical Officer, Intellia Therapeutics

Overview of Current HAE Treatment Landscape and Unmet Medical Need

Dr. Timothy J. Craig

Tenured Professor of Medicine, Pediatrics and Biomedical Sciences; Penn State University

Closing Remarks and Q&A Session

NTLA-2002 for Hereditary Angioedema (HAE)

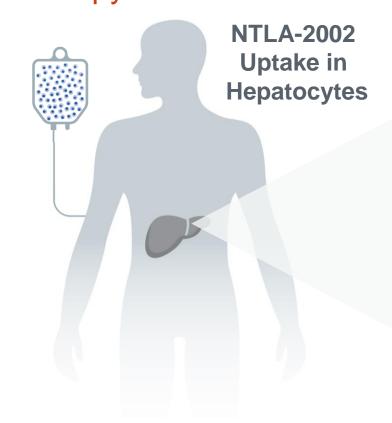
About HAE

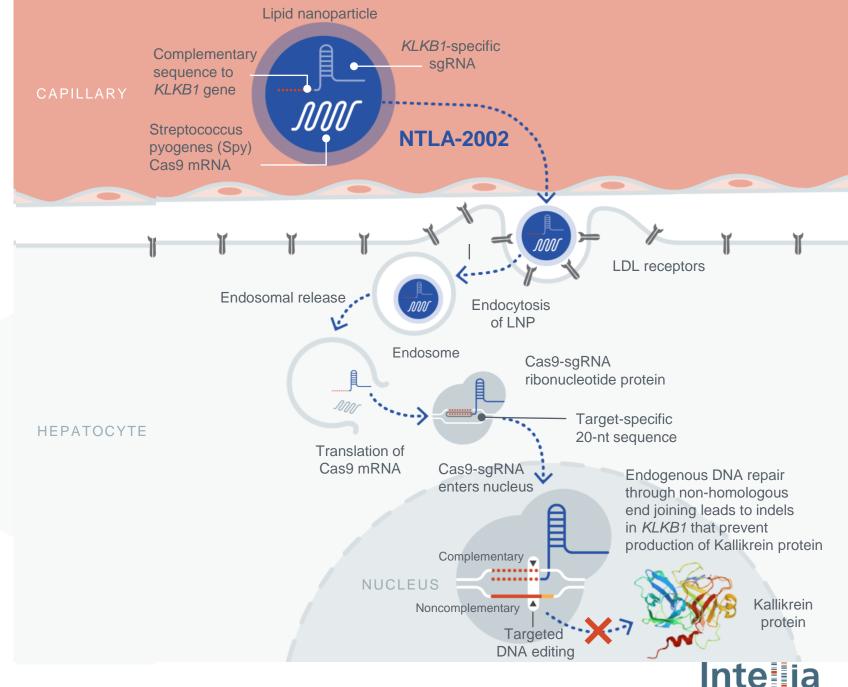
- Genetic disease characterized by recurring, severe and unpredictable swelling in various parts of the body
- Despite availability of existing therapies, significant unmet need persists
- Chronic dosing is required with current treatment options

Our Approach

Knock out *KLKB1* gene with a single dose

 Reduce kallikrein activity to prevent attacks


Key Advantages


Potential to:

- Be a single-dose treatment
- Provide extensive and continuous reduction in kallikrein activity
 - Intended to minimize the risk of breakthrough attacks
- Eliminate significant treatment burden

NTLA-2002 is a novel, investigational CRISPR/Cas9-based *in vivo* gene editing therapy

NTLA-2002 global Phase 1/2 study design: Two-part, multi-center study of NTLA-2002 in adults with HAE Types I and II

Intervention:

Single dose administered via an intravenous (IV) infusion

PHASE 1

Open-label, single-ascending dose

25 mg (n=3)

50 mg (n=4)

75 mg (n=3)

PHASE 2

Expansion study toconfirm recommended dose

andomized

25 mg (n=10

50 mg (n=10)

Placebo arm (n=5)

PRE-TREATMENT REGIMEN

Day -1: Oral dexamethasone 8 mg (or equivalent)

Day 1: IV dexamethasone 10 mg (or equivalent), IV or oral H1 and H2 blocker, C1-INH

PRIMARY OBJECTIVES

Evaluate safety & tolerability

OTHER OBJECTIVES

PK, PD, clinical efficacy (attacks)

PRIMARY OBJECTIVES

Clinical efficacy (attacks through week 16)

OTHER OBJECTIVES

PD, safety & tolerability, PK, Qol

Key eligibility criteria (Phase 1)

INCLUSION

- ✓ Documented diagnosis of Type I or Type II HAE
- ✓ At least 3 investigator-confirmed HAE attacks within 90 days prior to screening
- ✓ Access to acute therapies to treat HAE attacks
- ✓ Concurrent therapy with standard-of-care long-term prophylaxis allowed

EXCLUSION

- x Concomitant use of ecallantide or lanadelumab
- x Known hypersensitivity or prior infusionrelated reaction to LNP components
- x History of cirrhosis, Hepatitis B, Hepatitis C or HIV

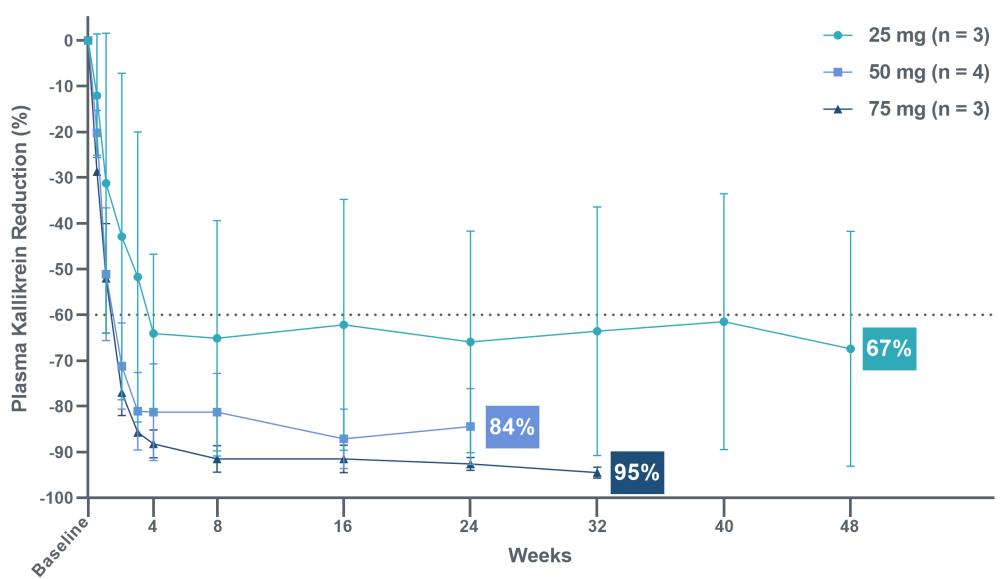
Patient demographics & characteristics

Parameter	25 mg n = 3	50 mg n = 4	75 mg n = 3	All patients N = 10
Age, years Median (range)	30 (26-52)	65 (52-73)	45 (27-49)	51 (26-73)
Sex, n (%) Male Female	3 (100) -	1 (25) 3 (75)	2 (67) 1 (33)	6 (60) 4 (40)
Weight, kg Median (range)	83 (78-135)	86 (74-107)	72 (64-84)	83 (64-135)
HAE Type, n (%) Type I Type II	2 (67) 1 (33)	2 (50) 2 (50)	2 (67) 1 (33)	6 (60) 4 (40)
Prior Use of Long-Term Prophylaxis, n (%) Yes No	2 (67) 1 (33)	4 (100) –	3 (100) -	9 (90) 1 (10)
Concomitant Long-Term Prophylaxis*, n (%) Yes No	2 (67) 1 (33)	3 (75) 1 (25)	1 (33) 2 (67)	6 (60) 4 (40)
Historical Monthly Attack Rate, Mean (SD)	6.0 (6.92)	1.2 (0.47)	7.7 (8.00)	4.6 (5.83)
Typical Attack Severity, n (%) Mild Moderate Severe	1 (33) 1 (33) 1 (33)	2 (50) 2 (50) 0	1 (33) 1 (33) 1 (33)	4 (40) 4 (40) 2 (20)

^{*}Ongoing at time of study drug administration.

SD, standard deviation.

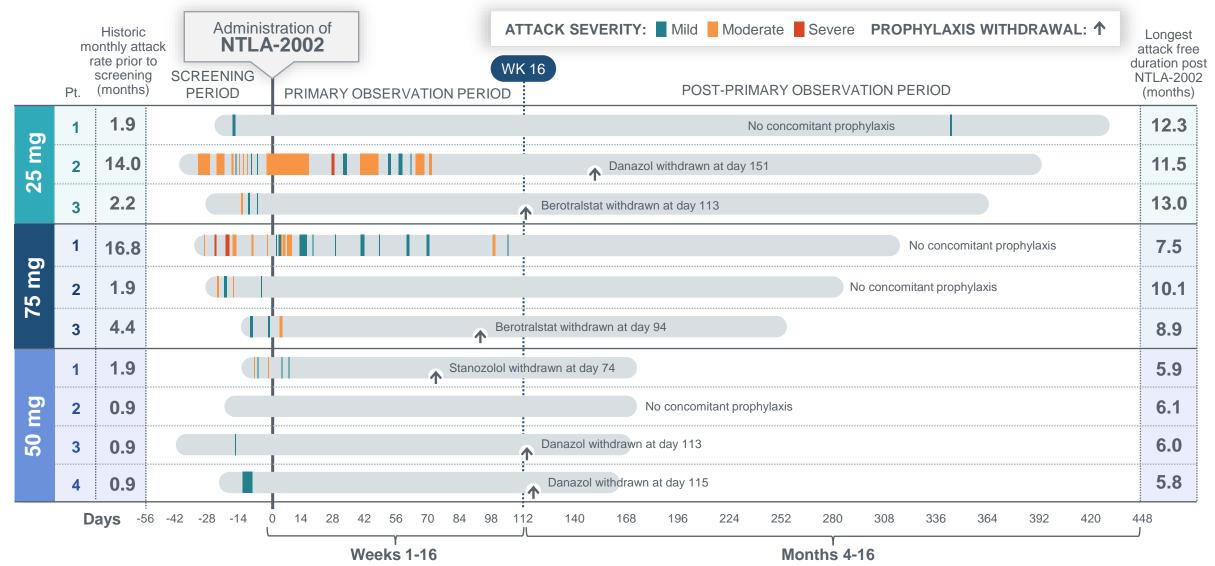
NTLA-2002 was generally well-tolerated across all dose levels evaluated


Adverse events occurring in ≥ 2		mg = 3		mg = 4		mg = 3	_	ntients : 10
patients	Gr. 1	Gr. 2						
Any TEAE (max grade)	2	1	2	1	1	2	5	4
Infusion-related reaction	2	_	1	1	2	1	5	2
Fatigue	1	_	2	1	2	_	5	1
COVID-19	3	_	1	_	1	_	5	_
Upper respiratory tract infection	1	_	1	_	2	_	4	_
Oropharyngeal pain	2	_	_	_	1	_	3	_
Abdominal pain	1	_	_	_	1	_	2	_
Headache	_	_	-	_	2	_	2	_
Viral upper respiratory tract infection	-	_	_	_	2	_	2	_

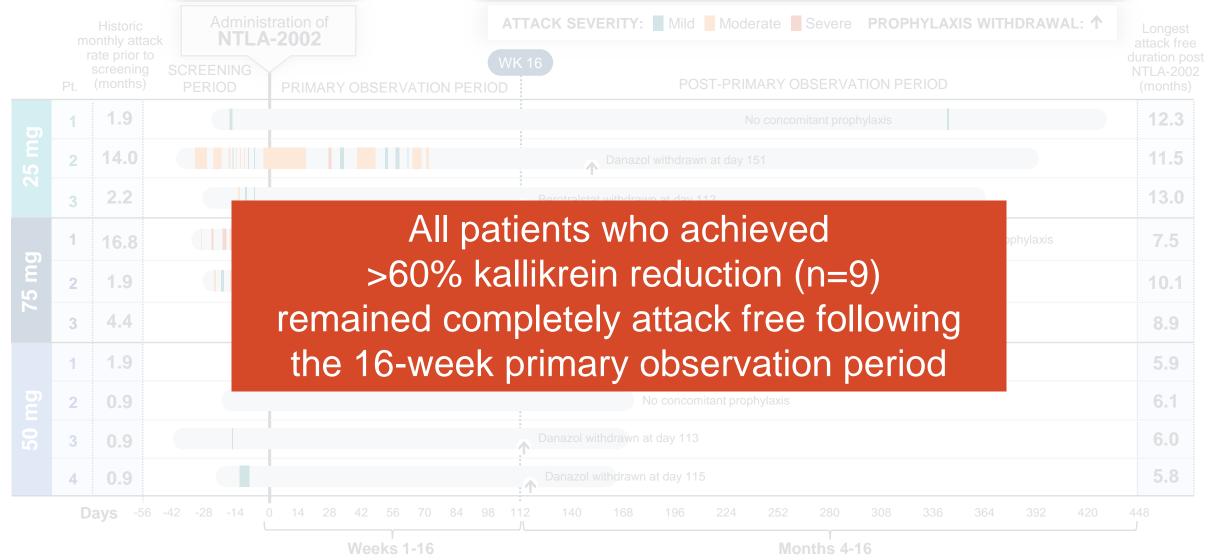
No clinically significant laboratory findings observed No treatment-emergent SAEs or ≥ Grade 3 **TEAEs** were observed

Median duration of follow-up for all patients was 9.0 months (range, 5.6-14.1 months)

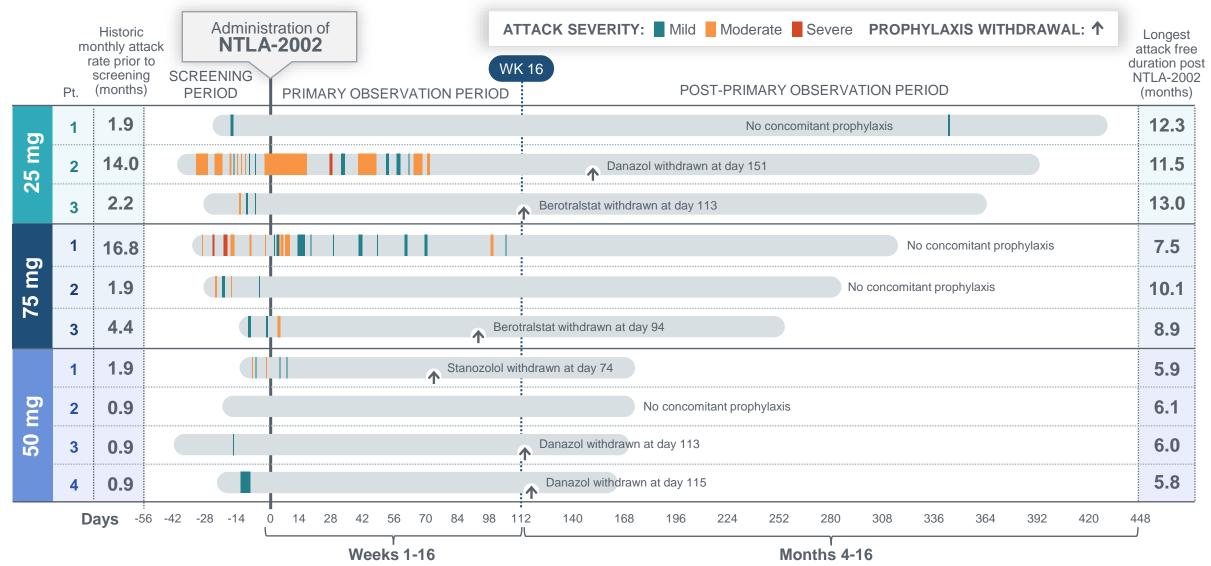
NTLA-2002 resulted in dose-dependent and durable reductions in plasma kallikrein protein



Data are mean values with standard deviation.



Dashed line represents targeted minimum reduction.
Mean percentage reduction callout on graph refers to last measurement as of the data cutoff date.


Robust and durable HAE attack reductions observed in all patients after a single dose of NTLA-2002

Robust and durable HAE attack reductions observed in all patients after a single dose of NTLA-2002

Robust and durable HAE attack reductions observed in all patients after a single dose of NTLA-2002

Across all patients, a single dose of NTLA-2002 led to a 95% mean reduction in monthly HAE attack rate through the latest follow-up

	25 mg n = 3	50 mg n = 4	75 mg n = 3	All patients N = 10
Week 1-16	-91% (16%)	-97 (5%)	-80% (30%)	-89 (19%)
Week 5-16	-89% (19%)	-100% (0%)	-87% (23%)	-92% (16%)
Week 1-24	-94% (11%)	-98% (3%)	-86% (20%)	-93% (13%)
On-study period	-95% (4%)	-98% (3%)	-93% (11%)	-95% (6%)

Data are mean % change from baseline (standard deviation).

Baseline is defined as up to 42 days screening period prior to the administration of NTLA-2002.

On-study period is defined as the time from the dosing of NTLA-2002 through the last HAE attack assessment as of the data cutoff date.

For the 50 mg cohort, one of four patients was not evaluable as they reported zero attacks during the screening period.

Extended Phase 1 data reinforce the potential of NTLA-2002 to be a functional cure for people living with HAE

- Robust and durable attack reductions observed in all patients after a single dose of NTLA-2002
 - Across all patients, a single dose of NTLA-2002 led to 95% mean reduction in monthly HAE attack rate through the latest follow-up assessment; 89% mean reduction in the 16-week primary observation period
 - Longest attack-free interval is 13.0 months and ongoing through the latest follow-up assessment
 - All patients were well controlled, with 9 out of 10 patients remaining completely attack free, following the 16-week observation period.
- Patients who discontinued concomitant long-term prophylaxis after administration of NTLA-2002 remained well-controlled, with no subsequent HAE attacks
- NTLA-2002 resulted in dose-dependent and durable reductions in plasma kallikrein protein
- NTLA-2002 was generally well-tolerated at all doses; all AEs were either Grade 1 or 2

Phase 2 portion of the study underway with enrollment expected to be completed in the second half of 2023

Agenda

Welcome

Introduction

Dr. John Leonard

Chief Executive Officer, Intellia Therapeutics

Review of NTLA-2002 Interim Clinical Data

Dr. David Lebwohl

Chief Medical Officer, Intellia Therapeutics

Overview of Current HAE Treatment Landscape and Unmet Medical Need

Dr. Timothy J. Craig

Tenured Professor of Medicine, Pediatrics and Biomedical Sciences; Penn State University

Closing Remarks and Q&A Session

The Future of Hereditary Angioedema

Timothy Craig, FAACAI, FAAAAI, FACP, FACOI

Tenured Professor Medicine, Pediatrics, Biomedical Sciences Penn State University Distinguished Educator Director – ACARE Center of Excellence for Angioedema

Director – Alpha-1-Antitrypsin Deficiency Center

Medical Advisory Board for the HAE-A

Director of AI and Respiratory Clinical Research

Senior Advisor, Vinmec Allergy Immunology, Hanoi, VN

Honorary Board of Directors, Lam Dong Medical College

Conflicts of Interest

Company	Research	Consultant	Speaker	Travel
CSL Behring	X	X	X	X
Ionis	X	X		
Takeda	X	X	X	X
Biocryst		X		X
BioMarin	X	X	X	
Kalvista	X	X		
Pharvaris	X			
Intellia	X	X	X	X

Clinical Presentation of HAE

Evolution of HAE Treatment: A Tale of 3 Generations Over 16 Years

- Pre-2008 → Grandmother
 - Rescue: Fresh Frozen Plasma required ED administration; unreliable results
 - Prophylaxis: Androgens required yearly assessment for toxicity; ill advised to use in females
- 2008-2018 → Mother
 - Rescue: Self administration subcutaneous and intravenous
 - Prophylaxis: Intravenous injections twice a week
- 2018-present → Child
 - Rescue: Self administration subcutaneous and intravenous
 - Prophylaxis: Haegarda: injection twice a week
 Takhzyro: injection twice a month
 Orladeyo: oral, daily

FDA-Approved On-Demand Therapeutic Options

Therapy	Patients	Self Administered	Mechanism	Notable Adverse Events
Ecallantide	≥12 years of age	No (sc)	Inhibits plasma kallikrein	Uncommon antidrug antibodies, risk of anaphylaxis
Icatibant	≥18 years of age*	Yes (sc)	Bradykinin B2 receptor antagonist	Common discomfort at injection site
C1-INH				
Plasma-derived	Children and adults [†]	Yes (iv)	Inhibits plasma kallikrein, coagulation factors XIIa, XIIf and XIa, C1s, C1r, MASP-1, MASP-2, and plasmin	Rare anaphylaxis
Recombinant	Adolescents and adults [†]	Yes (iv)	Inhibits plasma kallikrein, coagulation factors XIIa, XIIf and XIa, C1s, C1r, MASP-1, MASP-2, and plasmin	Uncommon risk of anaphylaxis in rabbit-sensitized persons

^{*} In Europe, approved in ≥2 years of age.

C1-INH: C1-esterase inhibitor.
MASP-1, -2, mannose-binding lectin-associated serine proteases 1, 2.

[†] Also approved in Europe.

First-Line Long-Term Prophylactic Therapeutic Options

Therapy	Patients	Approved Recommended Dose	Most Common Adverse Events
C1-INH			
Plasma-derived (iv)	≥6 years of age	Pediatric: 500 U every 3 to 4 days Adolescents/adults: 1000 U every 3 to 4 days (may increase to up to 2500 U)	Headache, nausea, rash, vomiting, and fever
Plasma-derived (sc)	≥6 years of age	60 IU/kg twice weekly	Injection site reactions, hypersensitivity, nasopharyngitis, and dizziness
Lanadelumab (sc) (plasma kallikrein inhibitor monoclonal antibody)	≥2 years of age	300 mg every 2 weeks, reduced dose from 2 to 12 years of age.	Injection site reactions, upper respiratory infections, headache, rash, myalgia, dizziness, and diarrhea
Berotralstat (oral) (plasma kallikrein inhibitor)	≥12 years of age	150 mg qd taken with food	Abdominal pain, vomiting, diarrhea, back pain, and gastroesophageal reflux disease

C1-INH: C1-esterase inhibitor.

Rationale for the Development of New HAE Therapies

- Improve treatment and outcomes for patients with HAE
 - Increased efficacy
 - Improved tolerability
 - Longer lasting prophylactic treatments
- Reduction in treatment burden
 - Improved accessibility
 - Less frequent dosing
 - Improved quality of life

Before Control

After Control

Future of HAE Treatment

In the past, we focused on treating attacks

Today, we focus on preventing attacks

 Newer medications in development aim to have increased efficacy and less frequent or burdensome dosing and administration

My hope is that we are approaching a "relative cure" for HAE

Agenda

Welcome

Introduction

Dr. John Leonard

Chief Executive Officer, Intellia Therapeutics

Review of NTLA-2002 Interim Clinical Data

Dr. David Lebwohl

Chief Medical Officer, Intellia Therapeutics

Overview of Current HAE Treatment Landscape and Unmet Medical Need

Dr. Timothy J. Craig

Tenured Professor of Medicine, Pediatrics and Biomedical Sciences; Penn State University

Closing Remarks and Q&A Session

Q&A

NTLA-2002 Interim Clinical Data Update

