Transient exposure to NTLA-2002, an investigational CRISPR/Cas9-based gene editing therapy, leads to durable pharmacodynamic responses and attack control in patients with hereditary angioedema

Hilary Longhurst¹, Padmalal Gurugama², Carri Boiselle³, Stacey Shea³, Christina Picornell³, Ahmed Abdelhady³, Adele Golden³, Mrinal Y. Shah³, David Maag³, Danny M. Cohn⁴

¹Te Whatu Ora | Te Toka Tumai Auckland, New Zealand ²Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK ³Intellia Therapeutics, Cambridge, MA, U.S. ⁴Amsterdam University Medical Center, Amsterdam, Netherlands

13th C1 Inhibitor Deficiency and Angioedema Workshop 06 May 2023

Clinical Trial Registration # NCT05120830

Targeting *KLKB1* gene expression for long-term prophylaxis of HAE attacks

Kallikrein is a clinically validated therapeutic target for preventing HAE attacks

2 This presentation includes data for an investigational product not yet approved by regulatory authorities.

NTLA-2002 is a novel, investigational CRISPR/Cas9-based *in vivo* gene editing therapy

NTLA-2002 Phase 1/2 study design: Two-part, multicenter study in adults with HAE Types I and II

PRE-TREATMENT REGIMEN

Day -1: Oral dexamethasone 8 mg (or equivalent)

Day 1: IV dexamethasone 10 mg (or equivalent), IV or oral H1 and H2 blocker, C1-INH

PRIMARY OBJECTIVES

Evaluate safety & tolerability OTHER OBJECTIVES

PK, PD, clinical efficacy (attacks)

PRIMARY OBJECTIVES

Clinical efficacy (attacks through week 16) OTHER OBJECTIVES

PD, safety & tolerability, PK, QoL

Patient demographics & characteristics

Parameter	25 mg n = 3	50 mg n = 4	75 mg n = 3	All patients N = 10	
Age, years Median (range)	30 (26-52)	65 (52-73)	45 (27-49)	51 (26-73)	
Sex, n (%) Male Female	3 (100%) _	1 (25%) 3 (75%)	2 (67%) 1 (33%)	6 (60%) 4 (40%)	
Weight, kg Median (range)	83 (78-135)	86 (74-107)	72 (64-84)	83 (64-135)	
HAE Type, n (%) Type I Type II Unknown*	2 (67%) 1 (33%) —	1 (25%) 2 (50%) 1 (25%)	2 (67%) 1 (33%) —	5 (50%) 4 (40%) 1 (10%)	

*Per communication with investigator, genotyping supports Type I diagnosis.

Patient reported HAE attack history

Parameter	25 mg n = 3	50 mg n = 4	75 mg n = 3	All patients N = 10	
Prior Use of Long-Term Prophylaxis, n (%) Yes No	2 (67%) 1 (33%)	4 (100%)	3 (100%) _	9 (90%) 1 (10%)	
Concomitant Long-Term Prophylaxis*, n (%) Yes No	2 (67%) 1 (33%)	3 (75%) 1 (25%)	1 (33%) 2 (67%)	6 (60%) 4 (40%)	
Historical Monthly Attack Rate, Mean (SD)	6.0 (6.92)	1.2 (0.47)	7.7 (8.00)	4.6 (5.83)	
Typical Attack Severity, n (%) Mild Moderate Severe	1 (33%) 1 (33%) 1 (33%)	2 (50%) 2 (50%) 0	1 (33%) 1 (33%) 1 (33%)	4 (40%) 4 (40%) 2 (20%)	

*Ongoing at time of study drug infusion

6 This presentation includes data for an investigational product not yet approved by regulatory authorities.

NTLA-2002 was generally well tolerated across all dose levels evaluated

Adverse events occurring in ≥ 2 patients	25 mg n = 3		50 mg n = 4		75 mg n = 3		All patients N = 10	
	Gr. 1	Gr. 2	Gr. 1	Gr. 2	Gr. 1	Gr. 2	Gr. 1	Gr. 2
Any TEAE (max grade)	2	1	2	1	1	2	5	4
Infusion-related reaction	2	_	1	1	2	1	5	2
Fatigue	1	_	2	1	2	_	5	1
COVID-19	2	_	1	_	1	_	4	—
Oropharyngeal pain	2	_	_	_	1	_	3	_
Headache	_	_	_	_	2	_	2	_
Upper respiratory tract infection	1	_	-	_	1	_	2	_
Viral upper respiratory tract infection	_	_	_	_	2	_	2	_

Across all dose levels, the most frequent AEs were infusion-related reactions and fatigue

No clinically significant laboratory findings observed

No treatment-emergent SAEs or ≥ Grade 3 TEAEs were observed

Data Cut Off: 28 September 2022 Patients counted once per row with highest grade reported. **Gr.**, Grade; **TEAE**, treatment-emergent adverse event

⁷ This presentation includes data for an investigational product not yet approved by regulatory authorities.

NTLA-2002 resulted in rapid and deep reduction in plasma kallikrein protein at all dose levels

This presentation includes data for an investigational product not yet approved by regulatory authorities.

8

NTLA-2002 elicited a similar trend in plasma kallikrein activity reduction across all dose levels

Mean (SD) % Plasma Kallikrein Activity Reduction by Dose Level

Plasma kallikrein protein concentration and activity levels demonstrate strong correlation

10 This presentation includes data for an investigational product not yet approved by regulatory authorities.

The concentration-time profile of LP01, a representative component of NTLA-2002, demonstrates dose-dependent exposure and rapid clearance

NTLA-2002 comprises LP01 (ionizable lipid), additional lipids and two RNA drug substances. Estimated mean $t_{1/2}$ range, 16.8 – 21.3 h.

Lower limit of quantitation is 10 ng/mL.

All patients have an ongoing attack-free interval with range of 2.3 to 10.6 months

¹² This presentation includes data for an investigational product not yet approved by regulatory authorities.

A single dose of NTLA-2002 led to robust, dose-dependent and durable reductions in total plasma kallikrein levels

- NTLA-2002 was generally well tolerated; all AEs were of mild or moderate severity
- Mean plasma kallikrein reductions of 65% (25 mg), 81% (50 mg), and 92% (75 mg) were observed at nadir, with responses persisting for the duration of follow-up
- Strong correlation observed between both reduction in plasma kallikrein concentration and kallikrein activity
- Exposure to NTLA-2002 demonstrated dose dependence and rapid clearance
- All patients in 25 mg and 75 mg cohorts have an ongoing attack-free interval of 2.3 to 10.6 months
- Patients who discontinued prophylactic therapy after NTLA-2002 infusion remained attack-free

These data support the promise of CRISPR-based in vivo genome editing in humans

Acknowledgements

Study participants and their families and caregivers

New Zealand Clinical Research

- Olivia Dempster
- Sub-Investigators: Dr. Karen Lindsay,
 Dr. Leanne Barnett, Dr. Mark Marshall,
 Dr. Millie Wang, Dr. Rohit Katial,
 Dr. Hannah Woo, Dr. Laura Elliott,
 Dr. Paul Hamilton, Dr. Christian Schwabe
- Clinical Nurse Manager: Holly Cantwell
- Pharmacy: Ben Oldfield, Yining Han, Sandy Chang
- Auckland City Hospital
 - Dr. Lydia Chan

- Amsterdam University Medical Center
 - Petra Zwiers
 - Remy Petersen MD
 - Lauré Fijen MD
 - Daniela Stols-Goncalves MD
- Cambridge University Hospitals
 - Tom Dymond
- Intellia Therapeutics
- Simbec-Orion

